

KING FAISAL UNIVERSITY COLLEGE OF SCIENCE MATHEMATICS AND STATISTICS DEPARTMENT

follow us

on social media

Course Name		Calculus 1			
Course Information	Course Code	Course No.	Course Level	Credit Hours	Prerequisite(s)
	Math-101	0827101	1	4	-
Course Track	University Electives	Requirement	🔀 College Requ	iirement 🗌 Sp	becialized Core

Course Description: This course provides the basic facts of calculus including limits, continuity, the definition of derivative, differentiation rules, implicit differentiation, the mean value theorems, definite and indefinite integral, the fundamental theorem of calculus and applications of differentiation and integration.

Course Outcomes

- 1. Recognize usual functions and their properties.
- 2. Compute different types of limits.
- 3. Demonstrate the continuity and differentiability of real valued functions.
- 4. Apply derivative techniques.
- 5. Evaluate indefinite and definite integrals.
- 6. Calculate areas and volumes by different integration techniques.

Assessment	Assignment	10%	Quiz	20%	Lab	-	Ducient		
Policy	Midterm	30%	Final	40%	Others	-	Project		
Textbook	Joel R. Hass, Christopher E. Heil, Maurice D. Weir. "Thomas' Calculus, Single Variable. Pearson Education, 14 th edition, (2017).								
References	James Stewart. Calculus: Early Transcendentals. Cengage Learning, 8 th edition, (2016).								

Course Name	Introdu	ction to statistic	CS						
Course Information	Course Code	Course No.	Course Level	Credit Hour	Prerequisite(s)				
	Math 103	0827103	1	4	-				
Course Track	University Re	University Requirement College Requirement Specialized Core Electives							

Course Description: This course is designed to describe statistical data graphically and compute measures of centrality and dispersion, and develop concepts of sample space, probability of an event, conditional probability, statistical independence, random variables, discrete and continuous probability distributions and hypothesis testing.

Course Outcomes

- 1. Recognize the basic definitions and concepts of probability (space, event, conditional probability, independence, random variables and probability distributions, Mathematical Expectations, variance,...)
- 2. Summarize a given dataset statistically using both tabular and graphical representation.
- 3. Interpret distributions proprieties (central tendency, variation and the shape of the distribution.
- 4. Compute linear correlation, correspondence and the regression line
- 5. Apply rules of combinatory analysis, conditional probability and particular distributions of probability
- 6. Test parameters using normal distribution
- 7. Estimate parameters from samples

Assessment	Assignment		Quiz	10%	Lab		Project	20		
Policy	Midterm	30%	Final	40%	Others					
Textbook	William M, Beaver, R and B, Beaver. Introduction to probability and statistics, Thomson Brooks/Cole – USA, 14 th Edition, (2013)									
References		Robin H. Lock, Patti Frazer Lock, Kari Lock Morgan, Eric F. Lock, Dennis F. Lock. Statistics: Unlocking the Power of Data, 1 st Edition. Wiley,(2017).								

Course Name	Introduction	n To Computer S	Sciences						
Course Information	Course Code	Course No.	Course Level	Credit Hour	Prerequisite(s)				
mormation	Math 102	0827102	1	3	-				
Course Track	University Electives	University Requirement College Requirement Specialized Core							

Course Description: This course provides basic knowledge of computer usage, computer components, concepts of basic operating systems, binary number system, and representation of data on computer, use computer in mathematical programs Software (Mathematica and Matlab) and word processing software (Word and Scientific Workplace), use computer in spreadsheets, presentations, databases and usage of the Web and utilizing the web based resources.

Course Outcomes

- 1. Define where appropriate, a range of Computer Concepts and common computer applications which underpin the principles of Computer Systems
- 2. Identify appropriate common computer applications, which supports the tasks performed by basic uses of Computer Systems.
- 3. Write some codes using common computer applications or Mathematical Programs Software
- 4. Apply some Binary Arithmetic and some specific commands of some mathematical programs Software (Mathematica and Matlab) for solving some mathematical problems.

Assessment	Assignment	10%	Quiz	20%	Lab	-	Project	_	
Policy	Midterm	30%	Final	40%	Others	-	Ŭ		
Textbook	 1. Stephen J. Chapman. Essentials of MATLAB Programming", Publisher: Cengae Learning,3rd Edition, (2016) 2. Ashok Arora. Computer Fundamentals and Application. Vikas publishing House, (2015) 								
References	Mohammad, N. Tutorials on Mathematics to Matlab. 1 st Book Library (2003),								

Course Nam	e Introductio	on to Comput	ter Sciences-Lab	,								
Course Information	Course Code	Course No.	Course Level	Credit Hour	Prerequisite(s)							
	Math-112	0827112	1	1	-							
Course Track	University Electives											
mathematical processing so use computer	Course Description : This course provides basic knowledge of computer usage, use computer in mathematical programs (Mathematica and Matlab) and use computer in Advanced Skills of word processing software (Word and Scientific Workplace), use computer in Advanced Skills of spreadsheets, use computer in Advanced Skills of presentations, databases and uses of the Web and utilizing some webbased resources.											
	Course Outcomes											
 Define v underpin Identify of Comp Write so Apply s Softwar Write a individu Practice 	 underpin the principles of Computer Systems. Identify appropriate common computer applications that supports the tasks performed by basic uses of Computer Systems. Write some codes using common computer applications or Mathematical Programs Software 											
Assessment	Assignment	Quiz			Project -							
Policy	Midterm	20% Fina		Others(reports)	40%							
Textbook	raul K. weilin. Pr	Paul R. Wellin. Programming with Mathematica, An Introduction. Cambridge, (2013).										
References	Stephen J. Chapman. Essentials of MATLAB Programming, Cengae Learning, 3 rd Edition, (2016).											

Course Name	Logi	c and Set Theor	у						
Course Information	Course Code	Course No.	Course Level	Credit Hours	Prerequisite(s)				
	Math-201	0827201	3	4	-				
Course Track	University Electives	University Requirement College Requirement Specialized Core							

Course Description: This course covers logic of statements, quantifiers, Methods of proofs, sets and operations on sets, Relations: Equivalence relations, partial order and linear order, functions and properties of functions, countable sets.

Course Outcomes

- 1. Recognize the basic definitions and concepts relating to statements logic, quantifiers ,sets, relations, functions and countable sets
- 2. Apply the definitions and fundamentals of statements logic including connectives, truth tables and induction rules.
- 3. Classify the quantifiers including their applications in mathematical logic.
- 4. Show some mathematical theorems using methods of proofs.
- 5. Conclude the main properties of the operations on sets.
- 6. Analyze different concepts related to relations such as equivalence, partial order and linear order.
- 7. Apply the main results on functions and countable sets.

Assessment Policy	Assignment	10%	Quiz	20%	Lab	-	Project	-	
Assessment I oncy	Midterm	30%	Final	40%	Others	-	Ŭ		
Textbook	Kevin Ferland. Discrete Mathematics and Applications, Textbooks in Mathematics, Taylor & Francis INC, 2 nd Edition, (2017)								
References		Ethan D. Bloch. Proofs and Fundamentals: A First Course in Abstract Mathematics.Undergraduate Texts in Mathematics, 2 nd Edition ,(2011)							

Course Name		Calculus 2								
Course Information	Course Code	Course No.	Course Level	Credit Hours	Prerequisite(s)					
	Math 202	0827202	3	4	Calculus 1 (0827101)					
Course Track	University Electives	University Requirement College Requirement Specialized Core								
Course Description : Calculus 2 is a fundamental course that deals with the basic knowledge related to: integration techniques, hyperbolic functions and their inverses, improper integrals, sequences, series and their tests of convergence, Taylor-Maclaurin formula, power series and their derivatives and integrals, polar coordinates and conic sections.										

Course Outcomes

- 1. State the basic definitions and results related to the main studied concepts.
- 2. Compute definite and indefinite integrals with the suitable integration technique.
- 3. Calculate the derivative of hyperbolic and inverse hyperbolic functions.
- 4. Evaluate some classes of improper integrals by means of the concepts of limits, convergence, and divergence.
- 5. Justify convergence or divergence of sequences and series.
- 6. Analyze different aspects of a power series including its radius of convergence, derivative, integral and its link to usual functions by means of the Taylor-Maclaurin formula.
- 7. Apply the concept of polar coordinates to the calculus of areas, lengths of curves, and representations of conic sections.

				1						
Assessment	Assignment	10%	Quiz	20%	Lab	-	Project	-		
Policy	Midterm	30%	Final	40%	Others	-				
Textbook	TextbookJoel R. Hass, Christopher E. Heil, Maurice D. Weir. Thomas' Calculus: Early Transcendentals. Pearson, 14th Edition, (2017).									
References	J. Stewart. Ca (2016).	lculus. I	Early Trans	cenden	tals. Cenga	ge Learr	ning, 8 th Editio	on		

Course Name		Group Theor	у		
Course Information	Course Code	Course No.	Course Level	Credit Hours	Prerequisite(s)
mormation	Math 203	0827203	4	3	Logic and Set Theory (0827201)
Course Track	University Electives	Requirement	t 🗌 College Re	quirement 🖂 S	pecialized Core

Course Description: Group theory is a fundamental course that deals with the basic knowledge related to : group structure, cyclic groups, symmetric groups, subgroups, Lagrange's theorem, co-sets, normal subgroups, factor groups, and group-isomorphism theorems.

Course Outcomes

- 1. Write the fundamental results related to the main concepts of groups theory.
- 2. State the basic definitions.
- 3. Characterize permutations.
- 4. Analyze group axioms in examples.
- 5. Apply Lagrange's theorem, the group-isomorphism theorems, and Cayley's theorem.
- **6.** Create examples and counterexamples.

Assessment	Assignment	10%	Quiz 20% Lab	Lab		Project				
Policy	Midterm	30%	Final	40%	Others		Ŭ			
Textbook	Marshall Hall.	Marshall Hall. The Theory of Groups. Dover Books on Mathematics, (2018).								
References	Harris Z. M. Z. Platform, (2018		cal Group	Theory. (Create Space Ind	epen	ident publi	shing		

Course Name	Linear Algebra 1									
Course Information	Course Code	Cours	e No.	Course Level	Credit Hours		Prerequisi	ite(s)		
	Math-204	082720)4	4	3	-				
Course Track	University Re	quireme	ent 🗌 (College Requ	irement 🔀 Speci	alized		Electives		
matrix operation	Course Description: This course provides the basic knowledge of solving systems of linear equations, matrix operations, vector spaces and inner product spaces, linear transformations, matrix representation of a linear transformation, eigenvalues, eigenvectors and matrix diagonalization.									
After the comp 1. State t 2. Calcul 3. Justify 4. Apply 5. Apply 6. Analyz	 Calculate solutions of linear systems. Justify linear independence in vector spaces. Apply the change of bases. Apply the main properties of inner products. Analyze the matrix representation of a given linear transformation. 									
Assessment	Assignment	10%	Quiz				Project			
Policy	Midterm 30% Final 40% Others									
Textbook	Gilbert Strang. Introduction to linear algebra. Wellesley-Cambridge Press (US), (2016).									
References	Meckes E. S., M. W. Meckes. Linear Algebra. Cambridge University Press, (2018).									

Course Name		Calculus 3								
Course Information	Course Code	Course No.	Course Level	Credit Hour	Prerequisite(s)					
	Math 205	0827205	4	4	Calculus 2 (0827202)					
Course Track	Universit Electives	University Requirement College Requirement Specialized Core								

Course Description: This course deals with the basic facts of vectors in space, dot and cross products, lines and planes in space, curves and surfaces in space, cylindrical and spherical coordinates, vector-valued functions, functions of several variables, partial and total derivatives, directional derivative and gradient, maxima and minima, Lagrange multiplier, multiple integrals and their applications and Green's theorem and curvilinear integration.

Course Outcomes

- 1. State the basic definitions and the fundamental results of the main concepts related to 3D-spaces, continuity and differentiability of functions of several variables
- 2. Analyze continuity and partial differentiability of functions of several variables.
- 3. Compute the extrema of functions of two variables.
- 4. Solve some optimization problems with the Lagrange multipliers
- 5. Evaluate double integrals and triple integrals
- 6. Apply the main techniques of vector analysis to vector fields, line integrals and Green's theorem.

Assessment	Assignment	10%	Quiz	20%	Lab	-	Project	-		
Policy	Midterm	30%	Final	40%	Others	-	Ŭ			
Textbook	U	George B. Thomas Jr., Maurice D. Weir and Joel R. Hass. Thomas' Calculus. Multivariable,14 th Edition, (2017).								
References	James Stewart (2016).	. Calculus	: Early Tr	anscende	ntals. Cenga	ge Lea	rning ,8 th e	dition,		

Course Name	Princ	Principles of Analysis										
Course Information	Course Code	Course No.	Course Level	Credit Hours	Prerequisite(s)							
	Math 206	0827206	4	4	Calculus 1 (0827101)							
Course Track	University Requirement College Requirement Specialized Core Electives											
	on the real line			-	plex and real numbers, countable ries and limits of functions and							
Course Outco	mes letion of this co	urse, the stud	ent will be abl	e to:								
1. State th	e basic definitio	ns and results	s related to the	main concept	ts of analysis.							
2. Describ	scribe the real line as a complete ordered field.											
3. Constru	act functions between sets; equivalent sets, finite, countable and uncountable sets.											
4. Judge c	onvergence, div	ergence, bour	ndedness, mor	otonicity of s	equences.							
5. Test dif	fferent modes of	series conver	rgence.									

6. Apply properties of monotonicity, limits, continuity and convexity of real functions.

Assessment	Assignment	10%	Quiz	20%	Lab	-	Project	-			
Policy	Midterm	30%	Final	40%	Others	-					
Textbook		Abbott S. Understanding analysis, Undergraduate text in mathematics. Springer, 2 nd Edition, (2016).									
References	,	Ross K.A.,. Elementary Analysis: The Theory of Calculus, Undergraduate Texts in Mathematics, Springer, 2 nd Edition, (2013).									

Course Name	Intro	duction to Top	oology							
Course	Course Code	Course No.Course Level		Credit Hours	Prerequisite(s)					
Information	Math 301	0827301	5	3	Logic and Set Theory (0827201)					
Course Track	U University Requirement College Requirement × Specialized Core Electives									
Limit Points, I	nterior, Exterior a	and boundary]	Points and the Clos	sure of Se	Spaces, Open and closed Sets, ts, Subspace Topology, Bases alent, Topological Properties,					

Course Outcomes

After the completion of this course, the student will be able to:

- 1. Recognize the basic definitions, concepts and some fundamental results related to topology.
- 2. Differentiate between bases and subbases accurately.
- 3. Analyze the structure of topological spaces.

Separation Axioms, Compactness, Connectedness.

- 4. Classify topological spaces with respect to separation axioms.
- 5. Develop the compactness notion.
- 6. Explain the notion of connected topological spaces.

Assessment	Assignment	10%	Quiz	20%	Lab	_	Project			
Policy	Midterm	30%	Final	40%	Others					
Textbook	Croom F. Princi	Croom F. Principles of Topology, Dover publications, New York, (2016).								
References	Adams,C. and F Prentice Hall, (2		Introducti	on to Topo	logy: Pure	and App	plied, Pears	son-		

Course Name	Re	eal Analysis							
Course Information	Course Code	Course No.	No. Course Credit Level Hours Prerequisite(s						
	Math302	0827302	5	3	Principles of Analysis (0827206)				
Course Track	University R	equirement] College Re	equiremen	t \boxtimes Specialized Core \square Electives				

Course Description:

This course provides basic knowledge related to uniform continuity of real functions, the main value theorem, properties of the differentiability of real functions, the intermediate value theorem, the application of the L'Hopital's rules to calculate limits, the Taylor series expansion, the Riemann integral and its properties, the convergence, , convergence and uniform convergence of a sequence or series of real functions and real power series.

Course Outcomes

- 1. Recognize the basic definitions and fundamental results related to the main studied concepts.
- 2. Distinguish the difference between the continuity and uniform continuity.
- 3. Apply the mean value theorem and Taylor series expansion.
- 4. Test Riemann integrability of a given function.
- 5. Evaluate some integrals using Darboux theorem and Riemann series.
- 6. Test different modes of convergence of sequences and series of real functions.

Assessment	Assignment	10%	Quiz	20%	Quiz	-	Project	-		
Policy	Midterm	30%	Final	40%	Others	-	Ĵ			
Textbook		Abbott S. Understanding analysis, Undergraduate text in mathematics. Springer, 2 nd Edition, (2016).								
References	Ross, K.A. Ele Mathematics.				•	Calculus.	Undergrad	uate Texts in		

Course Name	Dise	crete Math	ematics										
Course Information	Course Code	Course No.		lourse Level	Credit Hours		Prerequi	site(s)					
	Math 303	082730	3	5	3	Logic	and Set The	eory (0827201)					
Course Track	University Requirement College Requirement Specialized Core Electives												
	nduction, stron		-		-			of algorithms, , graph models					
Course Outco													
1	pletion of this co												
	ogic Propositior		-	-	on.								
3. Write r	ecursive algorit	thms.	-	-									
	ntiate between re complexity o			res.									
-	e graph models	-											
Assessment	Assignment	10%	Quiz	20%	Lab	-	Project	_					
Policy	Midterm	30%	Final	40%	Others	-	_ roject						
Textbook	Kevin Ferland Taylor & Frar					ns. Text	books in M	athematics,					
References	Ralph P. Grimaldi. Discrete and Combinatorial Mathematics. Pearson Education (US), 2017.												

Course Name	Ordinary o	lifferential e	equatio	on									
Course Information	Course Code	Course No	0.	Cours e Level	Credit Hours		Prerequ	isite(s)					
	Math 304	0827304		5	3	C	calculus 2	(0827202)					
Course Track	University Electives												
Course Description : This course deals with analytical methods for solving several classes of ODEs, Finding the solution of ODEs in a series form, Solving IVP by Laplace transformations and their inverse, solving linear systems of first order ODEs and investigating some applications of ODEs.													
Course Outco	mes												
After the comp	letion of this co	ourse, the stu	udent v	will be	able to:								
-	ize all types of first order OD	-	fferent	ial equ	ations.								
	te the solution		al equa	ations	by different me	ethods.							
	the solution of the solution o					nethod	l.						
	ne IVP by the L e the solution o					differ	ent metho	ds.					
Assessment	Assignment	10% Q	uiz	20%	Lab	-	Project	-					
Policy	Midterm	30% Fi	nal	40%	Others	-							
Textbook	TextbookWilliam E. Boyce, Richard C. DiPrima, Douglas B. Meade. Elementary differential equations and boundary value problems, Wiley, 11th edition, (2017).												
References		Shair Ahmad, Antonio Ambrosetti. A text book on ordinary differential equations. Springer, 2 nd edition, (2015).											

Course Name	Ri	ngs and Field	S									
Course Information	Course Code	Course No.	Course Level	Credit Hours		Prereq	uisite(s)					
	Math305	0827305	5	3	G	roup Theo	ry (0827203)					
Course Track	University Requirement College Requirement Specialized Core Electives											
Course Description: This course is designed to give basic knowledge in rings, fields, (Prime and maximal) ideals, ring homomorphism, factor rings, ring- isomorphism theorems and their use in constructing fields, polynomial rings, irreducible polynomials, unique factorization domains, Principal ideal domains and Euclidean domains, algebraic and finite field extensions.												
 State the b Analyze th Apply the Interpret th Judge cond 	letion of this cour asic definitions, c le concepts of prir fundamental isom ne factorization of cepts of ideals, qu le hypotheses of a	oncepts and s ncipal ideal de orphism theo polynomials otient rings, p given proble	ome fundame omains, Eucli rems. over fields. orime and maz m.	ental results i dean domain kimal ideals.	-		•					
Assessment	Assignment	10% Qui	20%	Lab	-	Project	-					
Policy	Midterm	30% Fina	l 40%	Others	-							
Textbook	book Stuart A. Rankin. Abstract Algebra: Introduction to groups, Rings and Fields with Applications. World Scientific Publishing, Co Pte Ltd, (2016).											
References		Shahrian Shahriari. Algebra in Action: A course in groups, Rings and Fields. American Mathematical Society, (2017).										

Course Name	Mathema	tical Program	ming							
	Course	Course	Course	Credit	$\mathbf{D}_{\mathbf{r}}$					
Course	Code	No.	Level	Hours	Prerequisite(s)					
Information										
	Math 306	Math 306 0827306 5 2 Introduction to computer (0827102)								
Course University Requirement College Requirement Specialized Core Electives Track Electives Electives										
Course Description: This course provides core concepts and principles of programming (variables,										
comments, data types, operators, special characters, flowchart, conditional statements, loops, break,										
continue, swit	ch- case,) a	nd of object	t oriented	programm	ning (class, object, methods, constructor,					
inheritance, su	per, polymorph	ism,) and t	their use in	mathemat	tical programs.					

Course Outcomes

- 1. Design simple mathematical programs programming concepts in solving given problems.
- 2. Design the flowchart of a given program.
- 3. Resolve several mathematical programs using conditional statements, loops, switch-case and arrays.
- 4. Create several mathematical programs using conditional statements, loops, switch-case and arrays.
- 5. Differentiate the object oriented programming concepts.
- 6. Interpret the use of object oriented their use in the programs.
- 7. Implement simple mathematical programs solving a given problem.

Assessment	Assignment	10%	Quiz	20%	Lab	-	Project	-	
Policy	Midterm	30%	Final	40%	Others	-			
Textbook	Deitel,P and Deitel,H. Java How to Program. Prentice Hall, 11 th Edition, (2017).								
References	Walter S, Kenrick ,M. Java: An Introduction to Problem Solving & Programming. Global Edition eBook, 7 th Edition, (2015).								

Course Name	Mathematical	l Programmin	ıg - Lab							
Course	Course	Course	Course	Credit	Prerequisite(s)					
Informa	Code	No.	Level	Hours						
tion	Math 316	0827316	51Introduction to computer Science (0827102)							
Course Track	University Requirement College Requirement Specialized Core Electives									
Course Description: This course provides core concepts and principles of programming (variables,										
comments, data types, operators, special characters, flowchart, conditional statements, loops, break,										
continue, s	switch- case,) and of obje	ct oriented	programm	ing (class, object, methods, constructor,					
inheritanc	e, super, polym	orphism,)	and their u	se in math	ematical programs.					

Course Outcomes

- 1. Design the flowchart of a given program.
- 2. Resolve several mathematical programs using conditional statements, loops, switch-caseand arrays.
- 3. Create several mathematical programs using conditional statements, loops, switch-case and arrays.
- 4. Differentiate the object oriented programming concepts.
- 5. Interpret the use of object oriented their use in the programs.
- 6. Design simple mathematical programs programming concepts in solving given problems.
- 7. Implement simple mathematical programs solving a given problem.

Assessment	Assignment		Quiz	-	Lab		Project	-	
Policy	Midterm	20%	Final	40%	Others(reports)	40%			
Textbook	Deitel,P and Deitel,H. Java How to Program. Prentice Hall, 11 th Edition, (2017).								
References		Walter S, Kenrick ,M. Java: An Introduction to Problem Solving & Programming. Global Edition eBook, 7 th Edition, (2015).							

Course Name	Ν	Aeasure Th	eory									
Course Information	Course Code	Course No.		ourse ævel	Credit Hours		Prerequis	site(s)				
	Math 307	0827307		6	3	Principle	s of Analy	sis (0827206)				
Course Track	Track											
integral of fund	Course Description: This course deals with the basic knowledge of measurable sets and functions, integral of functions, Synthesize the relation between the Riemann and Lebesgue integral, the L ^p -spaces, Apply the convergence theorems, Holder inequalities and theorems of Fubini and Tonelli.											
After the comp 1. State th 2. Analyz 3. Apply convers 4. Apply	 Analyze the relation between Riemann's integral and Lebesgue's integral. Apply convergence theorems (Fatou lemma, monotone convergence theorem, dominated convergence theorem). Apply Minkowski and Hölder inequalities. 											
Assessment	Assignment		Quiz		Lab	-	Project	-				
Policy	Midterm	30% I	Final	40%	Others	-						
Textbook	tbook Royden, H.L., Fitzpatrick, P. Real Analysis. Pearson, 4 th Edition, (2010).											
References	Rudin,W. Real and Complex Analysis. McGraw-Hill, 3 th Edition (1987).											

Course Name	Num	erical Analy	ysis 1							
Course Information	Course Code	Course No.	Course Level	Credit Hours	Prerequisite(s)					
	Math 308	0827308	6	3	Calculus 2 (0827202)					
Course Track	Universit	University Requirement College Requirement Specialized Core Electives								

Course Description: This course is designed to provide student with basic understanding of numerical algorithms and skills to implement algorithms to solve mathematical problems on the computer. Emphasis are addressed on numerical methods for root-finding of nonlinear equations, approximation of functions, interpolation, numerical differentiation and numerical integration.

Course Outcomes

- 1. State the basic definitions of errors, convergence and speed of convergence of numerical methods.
- 2. Calculate solutions of nonlinear equations with appropriate numerical methods.
- 3. Write polynomial interpolation for functions.
- 4. Estimate approximations of derivatives and integrals with numerical algorithms.
- 5. Calculate best approximations for given functions and data with appropriate numerical methods.
- 6. Implement numerical algorithms efficiently in a modern scientific programming language.

	Assignment		Quiz	10%	Lab					
Assessment Policy	Midterm	30%	Final	40%	Others		Project	20%		
Textbook	Burden R.L., Faires J.D. Numerical analysis. Brooks Cole, 10th edition, (2016)									
References	Wen Shen. Int	Wen Shen. Introduction to numerical computation. World Scientific Publishing, (2015).								

Course Name	A	nalysis of seve	eral varia	ables							
Course Information	Course Code	Course No		ourse evel	Credit Hours]	Prerequisit	e(s)			
mormation	Math 309	0827309		6	3	Cal	culus 3 (082	27205)			
Course Track	University Re	quirement 🗌	College	Require	ement 🛛 Spe	ecialized	Core	Electives			
of the Euclidean defined on open	tion: This course i space IR ⁿ , the spa subsets of IR ⁿ , t rema of real valued nula.	the chain rule	plication s formul	ns from I a, the in	R ⁿ to IR ^m , th version theo	e differe rem and	ntiability of the implici	functions t function			
Course Outcomes After the completion of this course, the student will be able to:											
the cours 2. Write the 3. Analyze	 State the basic definitions and the fundamental theorems and results related to the main concepts of the course. Write the different properties of a given linear application from IRⁿ to IR^m. Analyze the continuity and the differentiability of a function of several variables. 										
 Compute Lagrange Evaluate 	heorem and the in the extrema of a re multipliers. the integral of a re f variables formula	real valued fur	nction by	the gra							
Assessment Pol	-	Assignment 10% Quiz 20% Quiz - Project -									
Textbook	Maria S, T, Peter D-Lax. Multivariable Calculus with Applications. Springer, (2018).										
References		Shifrine, T. Multivariable Mathematics: Linear algebra, multivariable calculus, and manifolds. Wiley Publications,(2004).									

Course Name	Probat	oility theory								
Course Information	Course Code	Course No.	Course Level	Credit Hour	Prerequisite(s)					
Information	Math 310	0827310	6	3	Introduction to statistics (0827103)					
Course Track	University Rec	University Requirement College Requirement Specialized Core Electives								

Course Description: This course provides basic concepts of probability and determines the proprieties of probability distributions such as sample space, probability measure, conditional probability, Bayes and total probability theorems, centrality and dispersion measures, the moments of probability distributions, Chebyshev and Markov inequalities.

Course Outcomes

- 1. State the main definitions and theorems involved in probability theory.
- 2. Determine the cardinality of a finite set by the appropriate method of combinations.
- 3. Involve the main probability theorems/concept (sample space, probability measure, conditional probability, Bayes and total probability theorems ...) on real-life problems.
- 4. Compute centrality, dispersion measures and the moments of probability distributions.
- 5. Apply Chebyshev and Markov inequalities to determine a lower or upper bound of a probability.
- 6. Construct random experiment to generate a specific probability distribution.

Assessment	Assignment	10%	Quiz	20%	Lab		Project	
Policy	Midterm	30%	Final	40%	Others			
Textbook	Jay Devore. Probability and Statistics for Engineering and the Sciences. Duxbury Press, 9 th Edition, (2012)							
References	William M, Beaver, R and B, Beaver. Introduction to probability and statistics, Thomson Brooks/Cole – USA, 14 th Edition, (2013)							

Course Name	I	inear Algebra	a 2							
Course Information	Course Code	Course No.	Course Level	Credit Hours	Prerequisite(s)					
	Math-311	0827311	6	3	Linear Algebra1 (0827204)					
Course Track	University	University Requirement College Requirement Specialized Core Electives								

Course Description: This course provides basic understanding of eigenvectors, eigenvalues, diagonalization and triangularization, the Jordan Reduction, sequences and series of matrices, linear differential systems, quadratic and Hermitian forms, Euclidean and Hermitian spaces.

Course Outcomes

- 1. State diagonalization and trigonalization theorems.
- 2. Recognize quadratic forms and Hermitian forms.
- 3. Differentiate between a diagonalizable and a trigonalizable matrix.
- 4. Compute the exponential of a matrix.
- 5. Apply the exponential of a matrix for linear differential systems.
- 6. Calculate the Jordan reduction of a matrix.

Assessment	Assignment	10%	Quiz	20%	Lab	Project				
Policy	Midterm	30%	Final	40%	Others					
Textbook	Steven, R. Ad	Steven, R. Advanced linear algebra. Springer, (2014).								
References	Hugo J Woerdeman. Advanced linear algebra. Taylor & Francis INC, (2015).									

Course Name		Summer Tr	aining									
Program Information	Course Code	Course No.	Course I	Level	Credit Hour	Prerequis	site(s)					
	Math 399	0827399	6		3	3 83 gained credit ho						
Program Track	Universit Electives	University Requirement College Requirement Specialized Core Electives										
during the inter- math and statis	Course Description: An internship during the summer of the third year (after the Sixth level) where the student has to spend an average of five hours per day (Minimum 200 contact hours during the internship). The training will be done in a professional workplace on projects related to nath and statistics.											
 Demon Develo Enhance error ar Demon respons Const Communication Apply a Write a 	ber revelant fa strate the contr p mathematica e student abilit	cts and techn ibution of M l skills and s y to collect, lity to wor elation with hensively in software, if r t including th	nologies use athematics pirit of inne analyze, m k indepen co-workers writing and needed, to d ne intern's c	ed in the in other ovation v nanipulate dently a dorally u leal with	training pl fields and ia practica e data, dra and in gr using prope- issues bas	subjects. I experienc w conclusio roups inclu er scientific ed on real l	ons, and pe ding leade language. ife.					
Assessment Policy	Weekly Reports	Weekly 15% (Training 35% Lab -										
	Final Report	35% Pre	esentation	15%	Others	Others -						
Textbook				-	•			I				
References				-								

Course Name	Numer	ical Analys	is 2		
Comme	Course Code	Course No.	Course Level	Credit Hours	Prerequisite(s)
Course Information	Math-401	0827401	7	3	-Ordinary Differential Equations (0827304) - Linear Algebra 2 (0827311)
Course Track	University Electives	Requiremer	nt 🗌 Colleg	ge Requirer	ment Specialized Core

Course Description: This course is designed to provide student with basic understanding of numerical methods for solving initial value problems and boundary value problems for ordinary differential equations, direct methods for solving linear systems, iterative methods for solving linear systems and numerical methods for approximating eigenvalues.

Course Outcomes

- 1. State the basic concepts of numerical linear algebra and numerical methods for ordinary differential equations;
- 2. Calculate solutions of Initial Value Problems for ordinary differential equations with appropriate numerical method;
- 3. Calculate solutions of Boundary Value Problems for ordinary differential equations with appropriate numerical method;
- 4. Calculate solutions of linear systems with direct and iterative methods;
- 5. Estimate eigenvalues and eigenvectors with appropriate methods;
- 6. Implement numerical algorithms in a modern scientific programming language.

Assessment	Assignment		Quiz	10%	Lab		-	20%		
Policy	Midterm	30%	Final	40%	Other s		Project			
Textbook	Burden R.L., I	Burden R.L., Faires J.D. Numerical analysis. Brooks Cole, 10 th Edition, (2016)								
References	Wen S. Introd	Wen S. Introduction to numerical computation, World Scientific Publishing, (2015).								

Course Name	S	pecial Function	ns						
Course Information	Course Code	Course No.	Course Level	Credit Hours	Prerequisite(s)				
	Math-402	0827402	7	3	Calculus 3 (0827205)				
Course Track	University Requirement College Requirement Specialized Core Electives								

Course Description: This course provides basic understanding of Gamma and Beta Functions, Hypergeometric functions, Bessel functions and confluent hypergeometric functions, Orthogonal polynomials (Legendre, Laguerre, Hermit).

Course Outcomes

- 1. Recognize the analytical properties and integral representations of some special functions.
- 2. Identify the properties of orthogonal polynomials.
- 3. Apply the definitions of Euler's fractional integral representation for the Gauss hypergeometric function F.
- 4. Explain the Barnes approach to the hypergeometric functions.
- 5. Establish the orthogonality of Bessel functions.
- 6. Write some functions in series of orthogonal polynomials.

Assessment	Assignment	10%	Quiz	20%	Lab		Project			
Policy	Midterm	30%	Final	40%	Others		110,000			
Textbook		Richard Beals and Doderick Wong. Special function and Orthogonal Polynomials, Cambridge Studies in Advanced Mathematics, (2016) .								
References	Freeden W, Gu Basel, (2013).	utting M	1 . Specia	ll functi	ons of mathem	atical (geo-)scien	ces. Birkhäuser,		

Course Name	Statistics a	and Applic	cation						
Course	Course Code	Cours e No.		rse Level	Credit Hours	Prerequisite(s)			
Information	MATH 403	0827403	7		3	Probability theory (0827310)			
Course Track	University Requirement College Requirement Specialized Core Electives								

Course Description: This course is designed to provide student with understanding of some specific discrete and continuous distributions, central limit theorem, bivariate random variables, distribution of function of random variables and statistical estimation.

Course Outcomes

- 1. State the basic definitions and the fundamental results related to specific distributions and the statistical estimation.
- 2. Create random variables of specific probability distributions.
- 3. Write the properties of specific probability distributions.
- 4. Determine the marginal and conditional distributions
- 5. Deduce the probability density function of a function of random variables by the appropriate method.
- 6. Judge the quality of an estimator
- 7. Estimate parameters by confidence intervals.

Assessment	Assignment	10%	Quiz	20%	Lab	Project				
Policy	Midterm	30%	0%Final40%Others							
Textbook		Vijay R, and E, Saleh. An introduction to probability and statistics. Wiley Series in probability and statistics, 3 rd Edition, (2015).								
References	,	William M, Beaver, R and B, Beaver. Introduction to probability and statistics, Thomson Brooks/Cole – USA, 14 th Edition, (2013)								

Course Name	Со	mplex Analy	zsis									
Course Information	Course Code	Course No.	Course Level	Credit Hours	Prerequisite(s		uisite(s)					
	Math 404	0827404	7	3	Real	Analysis (0827302)					
Course Track	University Requirement College Requirement Specialized Core Electives											
functions, anal functions, Cau	Course Description: This course is designed to provide the basic knowledge of complex numbers and functions, analytic and harmonic functions, power series representation of analytic and meromorphic functions, Cauchy's theorem, applications of Cauchy's Integral Formula, zeros of Analytic function, Maximum Modulus Principal, singularities, Residue Calculus and its applications.											
After the comp 1. State th 2. Describ 3. Test the 4. Evaluat 5. Classify	 Describe the geometric and algebraic representations of complex objects. Test the analyticity and harmonicity of functions. Evaluate complex integrals with a variety of methods. Classify singularities of complex functions. 											
Assessment	Assignment	10% Qu	niz 20%	Lab	-	Project	_					
Policy												
Textbook	Lars Ahlfors.	Complex A	nalysis. TMH, 3	rd Edition, (20	013).	•						
References	Dennis G. Zill, Patrick D., Complex Analysis: A First Course with Applications. Hardcover, 3 rd Edition,(2013).											

Course Name	Partial Di	ifferential H	Equations								
Course	Course Code	Course No.	Course Level	Credit Hours	Prerequi	site(s)					
Information	Math 405	0827405	8	3	Ordinary Differential Equations (0827304)						
Course Track	University Requirement College Requirement Specialized Core Electives										
Course Description: This course treats the basic concepts of partial differential equations, Order and linearity of partial differential equations; First order partial differential equations and characteristics, Conservation laws and their weak solutions, Classification of second order partial differential equations and their solutions, Existence and properties of solutions for Laplace, heat and wave equations.											
After the compl 1. Recogni 2. Solve fi 3. Obtain v 4. Solve se	 Solve first order PDEs with suitable methods Obtain weak solutions for some first order PDEs. Solve second order PDEs. 										
Assessment	Assignment	t 10%	Quiz	20%	Lab	Project					
Policy	Midterm	30%	Final	40%	Others						
TextbookJ. Robert Buchanan and Zhoude Shao, A First Course in Partial Differential Equations. World scientific publishing Company, (2017).											
References	W. A. Strauss, Partial Differential Equations: An Introduction. John Wiley & Sons, 2 nd Edition, (2008)										

Course Name	Num	ber Theory							
Course	Course Code	Course No.	Course Level	Credit Hours	Prerequisite(s)				
Information	Math-406	0827406	8	3	Group Theory (0827203)				
Course Track	University Requirement College Requirement Specialized Core Electives								

Course Description: This course is designed to study integers, divisibility, representation of integers, prime numbers, linear Diophantine equations, and systems of equations defined by congruence, Chinese remainder theorem, Wilson and Fermat theorem.

Course Outcomes

- 1. Define divisibility, congruence, arithmetical functions, and quadratic residues.
- 2. Recognize quadratic fields and their applications.
- 3. Prove and apply properties of prime numbers and multiplicative functions.
- 4. Solve linear Diophantine equations.
- 5. Determine the existence of solutions for quadratic congruence by quadratic residues.
- 6. Solve Pell equations through of quadratic fields.

Assessment	Assignment	10%	Quiz	20%	Lab		Project		
Policy	Midterm	30%	Final	40%	Others		U U		
Textbook	Harold M. Stark, An Introduction to Number Theory. The MIT Press, (2015).								
References	Pete L. Clark, Number Theory: A Contemporary Introduction, Georgia University, (2017).								

Course Name	F	Research proj	ect		
Course Information	Course Code	Course No.	Course Level	Credit Hour	Prerequisite(s)
Information	Math 407	0827407	8	2	Completion of 90 hours
Course Track	University Electives	Requiremen	t 🗌 College Re	quirement 🔀 Spe	ecialized Core

Course Description: In this course, a selected research project by the faculty member is assigned to the student in order to analyze theoretical research requiring a report containing an appropriate description of the research work.

Course Outcomes

- 1. Collect related topics using library facilities, internet or other information sources.
- 2. Write a research plan.
- 3. Investigate the area of interest.
- 4. Analyze data or gathered results.
- 5. Compose all ideas in a written report.
- 6. Apply appropriate software and web resources
- 7. Discuss results and conclusions in a seminar.

	Assignment	-	Quiz	-	Lab	-				
Assessment Policy	Midterm	-	Presentation and discussion	30%	Others(Research Proposal report assess by the panel)	30%	Project	40%		
Textbook	Mathematical journals, online search, books and reviews									
References					-					

Course Name	F	ield Extensio	ons							
Course Information	Course Code	Course No.	Course Level	Credit Hours	Prerequisite(s)					
	Math-420	0827420	7/8	3	Group Theory(0827203)					
Course Track	University	University Requirement College Requirement Specialized Core Electives								

Course Description: This course provides basic knowledge of rings, fields, polynomial rings, irreducible polynomials, splitting field, algebraic and Galois field extension, finite fields and ruler and compass constructions.

Course Outcomes

- 1. State the main concepts and theorems for rings and fields.
- 2. Differentiate between specific elements of a field extension.
- 3. Describe the nature of the field extension.
- 4. Compare structures of Galois groups.
- 5. Calculate the Galois group of a field extension.
- 6. Apply the Primitive element theorem for field extensions.
- 7. Analyze the hypotheses of a given problem.

Assessment	Assignment	10%	Quiz	20%	Lab	Project					
Policy	Midterm	30%	Final	40%	Others						
Textbook	Ian Stewart. C	Ian Stewart. Galois Theory. Apple Academic Press INC, 4 th Edition, (2015).									
References	Mohamed Ay World Scienti		•			ved exercises and Problems.					

Course Name	(Combinatoric	28								
Course Information	Course Code	Course No.	Course Level	Credit Hour	Prerequisite(s)						
	Math421	0827421	7/8	3	Discrete Math(0827303)						
Course Track	University	University Requirement College Requirement Specialized Core Electives									

Course Description: This course provides basic knowledge of counting, Graphs, Generating functions, Recurrence relations, the method of characteristic roots, Equivalence relations, Group action, coloring, finite fields, coding theory.

Course Outcomes

- 1. Apply elementary techniques to simple combinatorial problems.
- 2. Apply generating functions methods to some combinatorial questions, including (in some cases) the problem of finding a formula for a sequence when given a recurrence relation.
- 3. Apply the principle of Inclusion-Exclusion to a variety of problems.
- 4. Calculate a sequence with its generating function.
- 5. Compare different methods of counting.
- 6. Compute the probability of an event.
- 7. Analyze the nature of a graph.

Assessment	Assignment	10%	Quiz	20%	Lab		Project				
Policy	Midterm	30%	Final	40%	Others		9				
Textbook		Walter D. Wallis and John C. George. Introduction to Combinatorics. CRC Press, Taylor & Francis group, 2 nd (2017).									
References	Robin Wilson. (2016).	Robin Wilson. Combinatorics, A very short Introduction. Oxford University Press,									

Course Name	Fu	nctional A	Analysis								
Course Information	Course Code	Course No.	Cou Lev		Credit Hours	Prere	quisite(s)				
	Math-422	0827422	7 /8		3	Measu	Measure theory (08)				
Course Track	Universit Electives	y Require	ment] College	Requirement	nt 🗌 Sp	ecialized C	ore 🖂			
Course Descr Linear bounded Hilbert spaces.	-	-			-	-		-			
Course Outco	mes										
After the comp	letion of this c	ourse, the	student	will be a	ble to:						
linear o 2. Identify 3. Apprize linear b 4. Analyze 5. Apply 2	e basic definiti perators. 7 the compact s e the important ounded operato e the relationsh Arzela-Ascoli, neorems.	ets in met properties ors. ips betwee	ric space s of finit en topol	es and fir te dimens ogical no	nite dimensio ional norme ormed, metri	onal spaces d spaces c, inner j	ces. 9, Hilbert sp product spa	paces and aces.			
Assessment	Assignment	20%	Quiz	10%	Lab	-					
Policy	Midterm	30%]	Final	40%	Others	-	Project	-			
Textbook	book Muscat, J. Functional Analysis: An introduction to Metric spaces, Hilbert spaces and Banach spaces. Springer, (2014).										
References	Rudin,W: Fun	udin,W: Functional Analysis . McGraw-Hill Education, (1991).									

Course Name	Fourier A	nalysis and	applications								
Course Information	Course Code	Course Le			Prerequisite(s)						
	Math 423	0827423	7/ 8	3	Measure theory (0827307)						
Course Track	University Electives	University Requirement College Requirement Specialized Core Electives									

Course Description: This course introduces the Fourier Transform (FT) of functions in L^1 and L^2 , and their convolution. Some density theorems are needed to compute FT in L^2 ; in particular, Schwarz spaces will play a fundamental role in this study. Techniques of FT will be applied to solve some partial differential equations.

Course Outcomes

- 1. List basic concepts of Lebesgue measure on IR and L^p-spaces.
- 2. Recall basic concepts of $L^{p}(IR)$ with some fundamental examples.
- 3. Analyze the Fourier transform (FT) and the inverse Fourier transform (IFT) in both L¹(IR) and the Schwarz space.
- 4. Apply the Plancherel Formula and Parseval Formula.
- 5. Solve some partial derivative equations using FT or IFT on $L^1(IR)$ or $L^2(IR)$

Assessment	Assignment	10% Quiz		20%	Lab	-	Project	_			
Policy	Midterm	30%	Final	40%	Others	-	110,000				
Textbook	Anders Vretblad. Fourier Analysis and Its Applications. Graduate Texts in Mathematics 223, Springer, (2008).										
References	Loukas Grafakos. Classical Fourier analysis. Graduate Texts in Mathematics 249, Springer, (2003).										

Course Name	Diffe	rential Geon	netry							
Course	Course Code		Course Level	Credit Hours	Prerequisite(s)					
Information	Math 424	0827424	7/8	3	Analysis of several variables (0827309)					
Course Track	University R Electives	University Requirement College Requirement Specialized Core Electives								

Course Description: The course deals with curves, surfaces in plane, space with various notions of curvature using exterior differential calculus and knowledge of Riemannian geometry in higher dimensions concentrating in three main parts: curves, surfaces and geodesic.

Course Outcomes

- 1. State the basic notions of the local theory of space curves, and the local theory of surfaces.
- 2. Recognize the concepts of Geometry of Surfaces and manifolds.
- 3. Calculate curvature and arc length.
- 4. Apply first and second fundamental forms.
- 5. Evaluate the principal curvatures, the mean curvature, and Gauss curvature of a given surface.
- 6. Develop the Gauss map notion.

Assessment	Assignment	10%	Quiz	20%	Lab	-	Project	-			
Policy	Midterm	30%	Final	40%	Others	-					
Textbook	M. P. doCarmo. Differential Geometry of Curves and Surfaces. Prentice-Hall, Saddle River NJ, 1976. Revised edition, (2016).										
References	Kuhnel ,W. Differential geometry, curves - surfaces –manifolds. AMS, 3 rd edition, (2015)										

Course Name	Euclidean and	Non Eucli	idean G	eometry								
Course Information	Course Code	Cours	se No.	Course Level	e Credit Hours	Prerec	quisite(s)					
	Math-425	082	7425	7/8	3	Logic	and Set Th	neory(0827201)				
Course Track	University Re	quiremen	t 🗌 Co	llege Re	quirement [Specia	lized Core	Electives Electives				
Course Descrip	tion: This course	examines	the five	groups	of axioms, t	heir com	patibility a	nd mutual				
independence. It	Introduces non E	uclidean	Geomet	ry and m	akes a comp	parison o	f Hyperbol	lic and				
Euclidean prope	Euclidean properties.											
Course Outcom	Course Outcomes											
After the comple	After the completion of this course, the student will be able to:											
1. Recogniz	the five categor	ies of axi	oms.									
2. Recall so	ome properties of t	the hypert	oolic ge	ometry (non-Euclide	an) of H	Bolyai-Lob	achevsky.				
3. Construc	t some models for	an axion	natic sys	stem								
4. Apply the	e axioms of Eucli	dean and	Hilbert	geometri	es							
5. Prove inc	lependence of Ax	ioms.										
6. Solve so	me classical probl	ems of no	n-Eucli	dean Ge	ometry.							
Assessment	Assignment	10% (Quiz	20%	Lab	-	Project	-				
Policy	Midterm	30% F	Final	40%	Others	-						
Textbook	Matthew,H. Geometry Illuminated: An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry. Mathematical Association of America, (2015).											
References		Edward John Specht, Harold Trainer Jones, Keith G. Calkins, Donald H.Rhoads, Euclidean Geometry and its Subgeometries, Birkhäuser, (2016).										

Course Name	Sto	chastic proces	sses					
Course Information	Course Code	Course No.	Course Level	Credit Hours	Prerequisite(s)			
	Math 426	0827426	7/8	3	Probability theory(0827310)			
Course Track University Requirement College Requirement Specialized Core Electives								
-		1			nal expectation, Markov chains on processes, continuous time			

Markov chains and birth and death processes.

Course Outcomes

- 1. State the basic definitions and the fundamental results related to some classes of stochastic processes.
- 2. Construct a stochastic model for a variety of problems.
- 3. Apply the method of conditioning and the method of conditional expectation.
- 4. Apply the method of generating functions.
- 5. Classify states of a Markov chain.
- 6. Summarize the properties of Poisson processes.

Assessment Policy	Assignment	10%	Quiz	20%	Lab	-	Project	-	
	Midterm	30%	Final	40%	Others	-	Ū		
Textbook		Sheldon M. Ross, "Introduction to Probability Models", Academic Press-Elsevier, 11 th Edition (2014).							
References	Mark A. Pins Elsevier, 4 th E	2		lin. An In	troduction to	Stocha	stic Model	ling.	

Course Name	Lin	ear Programr	ning		
Course Information	Course Code	Course No.	Course Level	Credit Hours	Prerequisite(s)
	Math 427	0827427	7/8	3	Linear Algebra 2 (0827311)
Course Track	University	Requirement	t 🗌 College Re	quirement 🗌	Specialized Core 🛛 Electives

Course Description: This course is designed to formulate linear programming models, solve 2-dimension problem by graphical method, understand technics of simplex and dual algorithms to solve any linear program, solve transportation problem, solve linear programming problems by an appropriate software such as: Lindo, Cplex, Matlab, Excel,..., etc.

Course Outcomes

- 1. Recall basic tools and concepts associated with linear programming problems.
- 2. Formulate a given simplified description of a suitable real-world problem as a linear programming model.
- 3. Sketch a graphical representation of a two-dimensional linear programming model.
- 4. Solve linear programming models in variant fields using the simplex method or graphical method.
- 5. Design a linear programming model from a transportation problem to minimize the cost.
- Solve linear programming problems by computer software such as: Lindo, Cplex, Matlab, Excel,..., etc.

Assessment	Assignment		Quiz	10%	Lab		Project	20%	
Policy	Midterm	30%	Final	40%	Others				
Textbook	Vanderbei, Ro (2014).	Vanderbei, Robert J.Linear Programming: Foundations and Extensions. Springer, (2014).							
References	Alan Sultan. I	Linear Pr	ogrammin	g: An Intro	oduction with	n Applicat	tions. Elsevier	r, (2014).	

Course Name	Fina	ncial Mathen	natics		
Course Information	Course Code	Course No.	Course Level	Credit Hours	Prerequisite(s)
	Math 428	0827428	7/8	3	Probability theory (0827310)
Course Track	University Electives	Requiremen	t 🗌 College R	equirement	Specialized Core

Course Description: This course establishes the basics of the one-period model, hedging. returns, arbitrage and state prices, complete and incomplete markets, the multi-period binomial model for stock prices and option, and Black-Scholes option pricing formula.

Course Outcomes

- 1. Recognize the basics of financial instruments such as stocks, bonds, futures, forwards, options, arbitrage free pricing and hedging.
- 2. Use the role of risk neutral probability measure and of elementary stochastic analysis in mathematical finance.
- 3. Apply the binomial model for stock prices, for pricing and hedging European and American type options..
- 4. Solve problems related to the concepts of the course.
- 5. Apply mathematical software (MATLAB, Mathematica) to price and hedge financial instruments in discrete time models..

Assessment	Assignmen t	-	Quiz	10%	Lab	-	Project	20%	
Policy	Midterm	30%	Final	40%	Others	-			
Textbook	C	Ansgar Steland. Financial statistics and mathematical finance: methods, models and applications. John Wiley & Sons, Ltd,(2012).							
References	Pliska,S.R. Ir Publishers Ind			hematical	Finance: Di	screte Tii	me Models.	Blackwell	

Course Name	Dynamica	Dynamical Systems and Chaos								
Course	Course Code	Course No.	Course Level	Credit Hours	Prerequisi	te(s)				
Information	Math 429	0827429	7/8	3	Ordinary I	Ordinary Differential Equation (0827304)				
Course Track	Image: Image: Construction of the second state of the s									
bifurcation theo exponents, Cha	dynamical systems, existence and uniqueness theorem, phase portrait, stability analysis of fixed points, bifurcation theory, the Smale horseshoe chaos, Melinkov's method for Homoclonic orbits, Lyapounov exponents, Chaos and strange attractors, applications in biology, electric circuits and physics. Course Outcomes									
 Recogn chaos. Classify Analysi Apply t Utilize 	 chaos. Classify the equilibria of a fixed point for the dynamical systems. Analysis the phase portrait for autonomous systems. Apply the bifurcation theory. Utilize oscillation theory. 									
Assessment	Assignment	10% Qui		Lab	-	Project -				
Policy	Midterm	30% Fin		Othe						
Textbook	Layek , C,G. A	n introduction	to dynamic	al systems	and Chaos.	Springer, (2	015).			
References		Bhimsen K. Shivamoggi. Nonlinear Dynamics and Chaotic Phenomena: An Introduction. Springer, (2014)								

Course Name	An introduction to	у								
Course Information	Course Code	Course No.	Con Lev	ırse 7el	Credit Hours	Prereau				
	Math 430	082743	0	7 /8	3	Ca	lculus 3 (08	27205)		
Course Track	University Req Electives	University Requirement College Requirement Specialized Core Clectives								
functions, the fir the Lagrange mu convex optimiza	Course Description : This course provides the basic facts related to the differentiability of real valued functions, the first and the second order conditions for minimization problems without constraints, the Lagrange multipliers, the KKT conditions for minimization problems of with constraints, the convex optimization, the gradient algorithm, the projection on closed and convex subset and the convergence of the projected gradient method.									
After the completent of the co	 Examine the nature of critical points of a real valued function with several variables. Solve constrained optimization problem with Lagrange multipliers theorem. Apply the KKT Theorem to solve optimization problems with constrained inequalities. Prove the convergence of some optimization algorithms. 									
Assessment	Assignment	10%	Quiz	20%	Quiz	-	Project	-		
Policy	Midterm	30% I	Final	40%	Others	-				
Textbook	0	Chong, E.K.P. and Zak, S.H. An Introduction to Optimization. New York: John Willey & Sons, 4 th Edition, (2013).								
References		Bertsekas, D.P. Nonlinear programming. Massachuset: Athena Scientific, 3 th Edition, (2016).								

Course Name	Evolut	tion of Mathe	matics		
Course Information	Course Code	Course No.	Course Level	Credit Hours	Prerequisite(s)
Information	Math 431	0827431	7/8	3	-
Course Track	University Electives	Requirement	t 🗌 College R	equirement [Specialized Core

Course Description: This course gives a survey of all Mathematical concepts/theorems made by savants in Medieval Islam, Solve Problems from Medieval Islam requiring mathematical modelling and Impact of Mathematics in medieval Islam on Engineering.

Course Outcomes

- 1. State the main contribution of Islamic savants in mathematics
- 2. Describe the evolution of concepts in mathematics
- 3. Model problems from Medieval Islam until now
- 4. Interpret rhetoric text in mathematics using modern symbols
- 5. Solve problems issued on medieval Islam

Assessment	Assignment	10%	Quiz	20%	Lab	-	Project	_
Policy	Midterm	30%	Final	40%	Others	-		
Textbook	Roshdi Rashed. Encyclopedia of the history of Arabic Science, Volume 2: Mathematics and the physical sciences. Taylor & Francis e-Library, (2009).							
References	Berggren J.L., . New York: Spr	-			of Medieva	al Islan	n, Berlin, I	Heidelberg,